ARC 619 - Conditional Form: Functional Gradients

DEA/G. Cigolini/Getty: palm tree section showing radial density gradient

DEA/G. Cigolini/Getty: palm tree section showing radial density gradient

Functionally Graded Materials (FGM) are composites with gradually varying material content.1 They consist of a gradual change of material characteristics (physical properties and/or chemical composition) from one area to another. Although the term has only existed since the mid-1980’s, the concept has been utilized in engineering for much longer. For example, the process of surface hardening of steel by carburization has been used for many hundreds of years.2 Presently, the concept of graded materiality represents a design/engineering approach to specifying new materials for specific structural, environmental, and aesthetic applications.


Nicholas Bruscia’s teaching and research experiment with architectural form and structure via computational simulation and material prototyping.

Naturally occurring FGMs, ranging from bones and teeth in our bodies to seashells and plants such as bamboo, show how biological cells have adapted to external stimuli; their self-adaptation may have produced a naturally gradient structure during the evolutionary process for enhancing the stiffness-to-weight ratio.3 As with prior iterations of this course, students will take inspiration from various natural precedents to study the relationship between materiality, form, and the environment. To follow, students will creatively represent these relationships via physics-based simulation and voxel modeling. These tools will be used to build experimental prototypes with calibrated material ratios that respond to a range of environmental conditions. Material characteristics may be blended based on a variety of architectural criteria such as; strength:weight, dark:light, gather:flow, solid:porous, reflection:diffusion, textured:smooth, stiff:soft, among others.

The course will be hands-on and workshop-based. Technical introduction via skill-building exercises in computational design tools such as Grasshopper, Monolith, Kangaroo2, and K2Engineering will be incorporated into class-time to support student research. Prior experience with such tools is not mandatory.